下载
登录/ 注册
主页
论坛
视频
热股
可转债
下载
下载

怎样理解“DNA是生命的蓝图”这句话 朱钦士

15-05-14 22:21 6963次浏览
天汉
+关注
博主要求身份验证
登录用户ID:
怎样理解“DNA是生命的蓝图”这句话?(一)



生物形成身体结构的基本工具



生物结构复杂精妙、巧夺天工的程度让人惊叹。我们的眼睛可以从进入瞳孔的可见光中获得物体的方向、远近、大小、形状、颜色、质地、运动速度等丰富的信息,并且能够通过眼球的转动和晶状体的调节对观察对象进行跟踪和聚焦,还能通过瞳孔的收放适应光线强度的变化。我们的耳朵有接收、传递、放大、转换空气振动状态的专门结构,用于感知环境的变化,包括感知敌友的存在。蝙蝠的耳朵可以接收频率5万赫兹以上的超声波,并且利用超声波的回波来定位。人的耳朵可以辨别从20赫兹到20,000赫兹的连续音频,并且能够从复杂的噪音背景中提取所需要的信息。生物运动器官的效率也令人惊叹,其中猎豹的腿可以使它以每小时110公里的速度奔跑;雨燕的翅膀使它能够以每小时350公里的速度飞行。我们身体的循环系统、消化系统、呼吸系统、排泄系统等,都是高度复杂、效能高度专一的。蜻蜓的复眼、蝴蝶的翅膀、孔雀的羽毛、植物的花朵,都是生物创造出来的结构上的奇迹。我们的大脑更是由上百亿个神经元按照高度有序的方式彼此连接,由此产生感觉、控制、思维、情感,是生物结构发展的最高成就,是我们的世界中构造最复杂,功能最强大的信息处理结构。

问题是,这些精妙的结构是如何形成的?所有的多细胞生物都是由一个细胞分裂发育而来。在细胞数量变大,种类也不断增加的时候,是什么指令让细胞知道自己的位置和“任务”,又是什么机制让细胞形成各种专门结构?我们常说DNA是生命的“蓝图”,它携带着我们身体建造的全部信息,有什么样的DNA,就会发展出什么样的结构。的确,“种瓜得瓜,种豆得豆”,老鼠的DNA也只能“指挥”受精卵发育出老鼠,而形不成猫的结构。科学家甚至可以用一滴鼠血(实则是血中白细胞里面的DNA),就能克隆出一只活的小鼠,证明DNA的确是生命的蓝图。如果DNA没携带生物身体构造的全部信息,又怎么能够指导这些完美生物结构的形成呢?

但是当我们去具体考察一下这份DNA“蓝图”时,却发现它和修建房屋的蓝图不同。修建房屋的蓝图会详细地写明这个房子有几层,有多少个房间、楼梯在哪里、每个房间有多少个门,多少个窗户,以及这些门窗的位置和具体尺寸。灯在哪里、电线从哪里通过、开关在什么地方、水管如何到每一个水龙头等,都必须一一具体注明。总之,有关这栋房子的所有结构信息,都可以在设计蓝图中找到。但是当我们去考察DNA这份“蓝图”时,却只发现为蛋白质编码的序列,以及控制基因表达的序列,仅此而已。在DNA的序列中,根本找不到人有两只手以及两条腿的指令,也找不到规定人的每只手有5根手指的信息。是什么DNA序列规定了舌头和牙齿长在嘴里、鼻子有两个孔、眉毛长在眼睛之上?是什么DNA序列规定心脏有两个心房、两个心室、血管分静脉和动脉?是什么DNA序列能够决定人有多少根头发,长在什么地方?实际上,所有这些有关身体结构的信息,在DNA的序列中都是找不到的。

从许多生物结构的复杂程度来看,要直接把这些信息全部都“写”进DNA序列也是不可能的。人只有2万多个基因,而人的头发就有大约12万根。就算一根头发的位置的信息只需要一个基因来记录,那也是远远不够的,更不要提我们身体里面的60万亿个细胞,它们的结构功能各异,位置不同,要靠区区两万多个基因来记录所有这些信息,可以说是毫无希望。

既然如此,我们又应该怎样来理解“DNA是生物的蓝图”这句话呢?在没有具体的结构指令的情况下,受精卵就能够准确无误地发育成为一个有完美结构的生物体。只要看看采集花蜜的蜜蜂,个个都像工厂里生产出来的产品,彼此之间几乎一模一样,而形成这些结构的信息不过是为蛋白质编码的DNA序列和控制这些序列表达时间和环境的序列,这真是一件难以想象的事情。

生物的蓝图和建造房屋的蓝图,工作方式是不一样的。建造房屋所需要的砖头、木材、水泥、玻璃等自己不会组装成一栋房屋,要靠施工队按照蓝图的指令把这些材料组装在一起。而生物在形成自己的身体时,并没有这样的施工队按需要把各种细胞放到它们应该所在的位置,建造出心脏或肾脏来,而是细胞必须自己“知道”应该是什么类型,“自动”装配成身体里面的各种结构。

这里的关键就在DNA中控制基因有序表达的信息。它决定何种基因在什么对方,在什么时候表达,以及表达多少。这个程序可以决定受精卵在分裂和分化的过程中,如何逐步形成各种类型的细胞。这是从细胞内部来控制细胞的发展方向,即“命运”。除此以外,在人的2万多个基因中,还有一些是为信号蛋白编码的。在生物体发育的过程中,有些细胞就会表达这些信号蛋白,“指挥”周围的细胞进一步变化,从细胞外部控制细胞的发展方向。新形成的细胞中,有一些又会表达另外一些信号蛋白,指挥更多类型细胞的产生。这样一步步发展下去,就会形成我们身体中200多种类型的细胞。这有点像诸葛亮给前方将士的“锦囊妙计”。锦囊里面的指令不是一开始就打开的,而是要到一定阶段才打开。通过在不同阶段打开不同的锦囊妙计,就可以一步步地指挥各种细胞的形成。

但是仅凭这种控制机制,只能形成由各种细胞组成的细胞团,而不能形成特定的结构,包括各种腔、管以及它们的形状、大小、和分支。要形成生物体各种精巧的结构,必须有某种机制来使基因的产物(蛋白质)能够在细胞内和细胞之间产生机械力,让细胞根据这些力来彼此识别、结合、变形,移动位置,从而形成各种精巧的结构。

这种在细胞内和细胞之间产生机械力的根源,其实就是一组为数不多的基因,它们的蛋白质产物可以在生物结构的形成过程中起作用。这组基因的历史可以追溯到单细胞生物,在多细胞生物中它们的功能被“升级”,成为生物体结构的“建筑师”。从水螅到人体,使用的都是同一套基因。这些基因产物(蛋白质)的顺序表达,就可以让细胞之间以特异的方式彼此作用,“自动”形成高度有序的特殊结构。虽然这些基因的数量不多,但是通过用不同的组合方式来使用它们,却可以形成各式各样的结构。这就像木匠的工具只有斧、锤、锯、刨、凿、钻等几种,却可以造出无数种木结构来一样。

基因的顺序表达可以逐步产生不同类型的细胞,而能够产生机械力的蛋白又能够使细胞之间以不同的方式彼此结合,形成生物结构。锦囊妙计分阶段打开,每次的妙计又指挥能够产生机械力的蛋白形成,这两种机制结合起来,就可以构建出一个完整的生物体,DNA的“蓝图”作用也就被实现了。这些在不同的阶段和位置上指挥周围细胞发育的信息分子,以及能够在细胞内和细胞间产生机械力的蛋白分子,就是建造生物结构的“基本工具”。在文章的第一部分中,我们先介绍这些“基本工具”的功能以及它们在结构形成中的作用。在随后的文章中,我们再用具体的例子来表明这些工具是如何造就各种生物结构的。



第一节 通过细胞-细胞直接接触导致结构形成的基因



钙粘蛋白(cadherin)让细胞分类聚集

多细胞生物要形成稳定的结构,首先细胞之间要有稳定的结合。一种让细胞彼此结合在一起的分子就是“钙粘蛋白”(cadherin),因为它需要钙离子才能发挥粘合细胞的作用。其英文名称中的头两个字母ca来自“钙”Calcium,adhe几个字母来自“黏附”adhesion,其中的字母a和ca中的a重合,最后的两个字母in则表示什么“素”。钙粘蛋白的历史非常久远,在被认为是所有动物鼻祖的单细胞生物“领鞭毛虫”(Choanoflagellate)中就已经有钙粘蛋白的表达。单细胞的领鞭毛虫通过它彼此聚在一起成为链状或星状,例如领鞭毛虫家族中的原绵虫(proteospongia),就可以好几个细胞用“尾对尾”的方式聚在一起,共同使用一根柄状物附着在固体上。单细胞生物的这种钙粘蛋白后来就被多细胞生物发展,被用来把细胞彼此黏附在一起。

钙粘蛋白由720-750个氨基酸组成,是一个跨膜蛋白。它含有一个跨膜节段,细胞膜外的部分很大,细部膜内的部分比较小。钙粘蛋白有一个特殊的性质,就是它们的细胞外部分可以彼此结合,即同类蛋白质分子之间的结合,这样表达钙粘蛋白的细胞就可以通过这种蛋白彼此结合在一起。钙粘蛋白在细胞内的部分则通过b-连锁蛋白和(b-catenin)a-连锁蛋白(a-catenin)和细胞里面由肌纤蛋白(actin)组成的“细胞骨架”相连,这样就不仅把结合力施加于细胞膜上,而且还把力延伸到细胞内的骨架上,把细胞牢牢地栓在一起。

如果不同的细胞表达不同量的钙粘蛋白,细胞之间黏附力的强弱就会有所不同。表达钙粘蛋白多的细胞之间黏附力强,就会彼此聚集成团,位于细胞团的核心,而黏附较弱的细胞则包裹在外面。这个过程有点类似于油和水的分相,在无重力的情况下,结合力强的水分子彼此聚集在一起,成为位于液体内部的水球,而结合力弱得多的油分子则包围在水球的外围。这就是最初步的结构形成。在多细胞生物形成的早期,由于细胞表达不同量钙粘合蛋白的机制还不固定,所以这样形成的结构是不稳定的,但是随着细胞调控钙粘蛋白表达量的机制固定下来,细胞按照黏附力分类就可能形成稳定的结构。当然仅靠同一种钙粘蛋白的多少是不足以形成复杂的结构的,大多是实心的多层球体。

经过长期的进化,动物已经有多种钙粘蛋白,由原来的钙粘蛋白基因复制和变化而成。不同类型的细胞表达不同的钙粘蛋白,例如上皮细胞表达E-钙粘蛋白(E表示epithelial),神经细胞表达N-钙粘蛋白(N-表示neural),胎盘细胞表达P-钙粘蛋白(P表示placental),肾脏细胞表达K-钙粘蛋白(K表示kidney),维管上皮细胞表达VE-钙粘蛋白(VE-表示vascular-epithelial),视网膜细胞表达R-钙粘蛋白(R表示retinal)等等。新发展出来的钙粘蛋白也保持了原来的钙粘蛋白的特性,即只有同种的钙粘蛋白才能彼此结合。这样,E-钙粘蛋白就只和E-钙粘蛋白结合,而不和N-钙粘蛋白结合。反过来,N-钙粘蛋白也只和N-钙粘蛋白结合,而不和E-钙粘蛋白结合。这样,表达E-钙粘蛋白的上皮细胞就不会和表达N-钙粘蛋白的神经细胞结合。如果把表达不同钙粘蛋白的细胞混合在一起,他们就会按照在细胞表面表达的钙粘蛋白的种类自动分类,同种细胞彼此结合在一起,而不和其他种类的细胞相混,这样就可以使不同类型的细胞自动分类,分别聚集成为各种组织。随着动物身体复杂性和细胞种类的增加,钙粘蛋白的种类也不断增多。例如无脊椎动物总共有不到20种钙粘蛋白,而脊椎动物的钙粘蛋白超过100种,光是人类就有80多种钙粘蛋白,成为人体各种组织中细胞自动分类聚集的基础。

钙粘蛋白虽然是细胞分类聚集的重要机制,是细胞分类聚集的基础,但是仅由钙粘蛋白导致的细胞分类聚集只能形成实心的细胞团,而不能够形成腔、管等更复杂的结构。这些结构的形成需要其他的“工具”。



细胞的极化是形成面、片、腔、管的基础

在上一部分的讨论中,我们假设钙粘蛋白在细胞表面上的表达是均匀的,即在细胞膜的各个部分表达的程度都一致。在这种情况下,细胞之间通过钙粘蛋白形成的结构就只能是实心的球形结构。我们把这种状态的细胞称之为没有“极性”的,即细胞的性质在各个方向上都相同。但是多细胞生物中,如果所有的细胞都是没有极性的,那就只能形成实心的球状结构,各种复杂的结构如片、腔、管就无法形成了。所以在多细胞生物体中,许多细胞都带有一定的极性,即细胞的形状和结构不是中心对称的,在不同的方向上,细胞膜的组成、细胞内蛋白质和RNA的分布、细胞骨架纤维的走向、细胞核和中心粒的位置,都是不对称的。我们把细胞结构在各个方向上的不对称性叫做细胞的“极性”(polarity),而细胞从非极性状态转变为极性状态叫做细胞的“极化”(polarization)。细胞的极化在形成复杂结构上非常重要。

例如细胞如果只在侧面表达钙粘蛋白,而上下面(分别称为“顶面”和“底面”)不表达,细胞就能够连成片状,而不再聚集成球状,因为顶面和底面的细胞膜无法彼此粘合。如果底面的细胞膜上再有和细胞外基质结合的分子,片状结构中的细胞就都以底面和基质结合,这样顶面就成为唯一能够和外部空间接触的细胞面。生物体里的“上皮”(epithelium)就是这样形成的,这种片状结构里面的细胞也被称之为“上皮细胞”(epithelial cells)。

上皮的形成是多细胞生物发展史上的重大事件,从此生物就有了一层细胞来区分身体的“外”和“内”。如果细胞膜是细胞的“墙壁”,那么上皮就是生物体的“墙壁”。处于生物体内部的细胞就有了比较稳定的内环境,而不像单细胞生物那样始终暴露在复杂多变的外部环境中。在这样相对稳定的内环境中,生物体就可以发展出更加复杂的结构来,而且许多这些结构的“内表面”仍然由上皮组成。除了我们身体外部的皮肤表面,我们身体内部粘膜的表面、血管和淋巴管的内壁、小肠的内壁、肺泡中和空气接触的细胞、肾脏的肾单位(nephron)、各种分泌腺体内围绕着把分泌物输送出去的管道的细胞,都由上皮组成。这些上皮的结构都类似,即细胞以侧面相互连接,细胞底部通过“整联蛋白”(integrin)与由细胞外基质组成的“基膜”(basal lamina)连接,而细胞顶部暴露于外部空间或腔管的内部空间,可以长出各种结构,用来执行各种生理功能,例如小肠的肠壁细胞的顶面长出许多绒毛,用来吸收营养;气管内壁的细胞长出许多纤毛,通过它们的定向摆动清除痰液;分泌腺的上皮细胞的顶端则是细胞分泌各种分子的地方。

如果上皮细胞的顶端能够收缩(通过顶端区域的肌纤蛋白actin和肌动蛋白myosin),细胞的顶部就会变尖,在上皮的暴露面上产生拉力,使得原来是平面的片状结构卷曲,卷曲进行到一定的程度,就能形成腔或者管。在管的一些特定部位上皮细胞的顶端再收缩,就可以在管上形成分支,例如气管就这样分为支气管,支气管再不断分支,最后形成肺泡。血管也可以这样分支,最后形成毛细血管。所以通过细胞极性的形成和变形,就可以形成面、片、腔、管等结构。

在上皮细胞的侧面,钙粘蛋白在细胞之间形成“粘着连接”(adherensjunction)。钙粘蛋白的细胞外部分彼此结合,细胞内部分则通过a-连锁蛋白和b-连锁蛋白与细胞里面由肌纤蛋白组成的“细胞骨架”相连。由于上皮是和外界接触的地方,为了防止分子从细胞之间“溜”进来,让外部分子必须通过顶端膜这个“海关”,细胞之间在靠近顶膜的地方还形成“紧密连接”(tight junction)。紧密连接由“紧密连接蛋白”caludin和eccludin组成。紧密连接还有另外一个重要功能,就是防止顶端膜和测面的膜成分彼此混合。上皮细胞之间的这些紧密联系使得他们在上皮中的位置固定而难于移动。

并不是身体里面所有的细胞都是上皮细胞,身体里面还有另外一类细胞,它们没有明显的极性,彼此之间并不紧密结合,例如结缔组织里的细胞,包括血细胞、脂肪细胞、骨细胞、软骨细胞、筋腱里面的细胞、神经系统中的神经细胞和胶质细胞等。这些细胞来自一类没有或很少极性,可以移动位置的细胞,叫做“间充质细胞”(mesenchymalcells)。在胚胎发育过程中,常常需要细胞移位,到达别的地方,在那里形成新的组织和器官,而这是没有移动能力的上皮细胞做不到的,这个任务就由间充质细胞来完成。

间充质细胞是由胚胎发育过程中的上皮细胞失去极性而形成的,这个过程叫做“上皮-间充质转化”(epithelail-mesenchymal transition,简称EMT)。在这个过程中,钙粘蛋白的表达被抑制,细胞之间粘连减弱或消失,细胞获得迁移和侵袭组织的能力,在胚胎发育中起重要作用。例如神经脊细胞(neural crestcells)就是可以移动的细胞,它们由胚胎的神经外胚层(neuroectoderm)的上皮细胞通过上皮-间充质转化而来。它们能够运动到身体各处,形成神经细胞、胶质细胞、头面部的软骨细胞和骨细胞以及平滑肌细胞等。上皮细胞在转变成癌细胞时,也要进行上皮-间充质转化,使自己脱离黏附,获得迁移和侵袭组织的能力,因此恢复这些细胞的极性也是治疗癌症的一个途径。

在胚胎发育中,间质细胞也可以反向转化,即“间充质-上皮转化”(mesenchymal-epithelialtransition, 简称MET),重新变回上皮细胞。在器官的形成过程中,常常需要细胞在上皮和间充质两种状态下来回转化,通过间充质细胞阶段获得迁移能力,又在最后的位置变回上皮细胞,形成各种结构。例如组成肾脏的“肾单位”中的上皮细胞就是由“生肾间充质细胞”(nephrogenic mesenchymal cells)通过间充质-上皮转化变来的。这些事实说明,细胞的极化和去极化在胚胎发育,形成各种组织和器官的结构上起关键的作用。



形成和维持细胞极性的原理

从我们对细胞的基本了解来看,细胞的极性化似乎是一件比较难于理解的现象。蛋白质在细胞中是可以向各个方向扩散的,而细胞膜也是动态的,里面的磷脂和蛋白质处于连续不断的流动和移位之中。这些随机的过程似乎只能使细胞的结构均匀化,就像糖分子在一杯水中最后会平均分布在水的各部分一样,怎么会出现分子在细胞的各个方向分布不均的情况呢?

有两个机制可以使细胞的极性出现。一个是正反馈机制。如果一种分子在细胞膜的某处由于某些原因浓度比在其它地方稍高一些,它又能够通过与其它分子之间的相互作用招募其它分子来这个位置,而新到来的分子又能够促进头一种分子在该位置聚集,这就是一种正反馈机制,可以导致分子或分子团的不均匀分布。一个类似的例子是白蚁建蚁山(白蚁的窝)。一开始白蚁在地表随机地堆砌土块,所以地上会出现一片基本均匀的小土粒。但是白蚁有一个惯,就是往最高的那个土块上堆新土,这样土块的增高速度就不是平均的了,而是在当初稍大的土块上有更多的白蚁在堆土,这样这个土块就会逐渐明显高于其它土块,使得后来所有的白蚁都往这个土块上堆土,最后形成单一的土山。这就是正反馈造成物质分布不均的例子。

第二个机制是蛋白分子团之间互相排斥,或者说互相“拆台”,这样它们就不可能进入对方的“领地”,只能在细胞的不同位置存在。如果其中一种或者两种蛋白团在膜上又有能进行正反馈的位置,这两个蛋白团就不可能在细胞中均匀分布了,而是分别分布在膜内不同的地方。例如有两个蛋白质聚成的蛋白团,一个由A、B、C三种蛋白质组成,只有三种蛋白质都存在时蛋白团才稳定。另一个蛋白团是由D、E、F三种蛋白质聚合而成,也都需要三种蛋白质都存在才能成为稳定的聚合物。三种蛋白质彼此结合,形成稳定的复合物,就是一种正反馈机制。设想A、B、C中的任何一种蛋白在进入DEF的领地时,DEF能够使它失活,不能和其它两种蛋白质形成聚合物,那么在DEF的领地里就不可能有ABC聚合物的存在。反过来,如果ABC聚合物能够使进入其领地的D、E、F蛋白失活,不能和其它两种蛋白质形成稳定聚合物,那么在ABC的领地里也不会有DEF聚合物形成。从细胞形成极性的过程来看,这两种机制都起了作用。下面我们就具体来看看这两种机制是如何发挥作用,造成细胞的极化的。



形成和维持细胞极性的蛋白质

(1)Par复合物

1988年,美国科学家Kemphues等在研究线虫(C. elegans)的胚胎发育时,发现了6个基因,它们的突变使线虫的胚胎只能形成无结构的细胞团,而不能形成正常的组织和器官。科学家们把这6个基因称为“分隔缺陷基因”(partition defective),简称Par基因,从Par-1到Par-6。所有这些基因的产物都是可溶性蛋白,都位于细胞质中。虽然这些蛋白都叫Par蛋白,但是它们只是为细胞的极性所需,并不是同类的蛋白质。例如Par1和Par4是蛋白激酶,即可以在蛋白质分子上加上磷酸基团,改变其性质,让其活化或失活的酶。在线虫一个细胞阶段的胚胎中,这些Par蛋白的分布就是不均匀的,其中Par-3和Par-6位于胚胎的前端,Par-1和Par-2位于胚胎的后端,Par-4和Par-5则平均分布。如果突变这些基因中的任何一种,胚胎的极性就消失。如果让Par-3基因突变,Par-1和Par-2就不再位于胚胎后端,而是均匀分布了,说明这些Par蛋白之间在位置上是互相拮抗的。

1990年,日本科学家Tabuse等在线虫中发现了另一个Par蛋白,这个基因的突变造成的后果和其它Par基因突变的效果一样。这个基因的产物也是一个蛋白激酶,叫做“非典型的蛋白激酶C”(atypical protein kinase C,简称aPKC)。蛋白结合试验表明,Par-3、Par-6和aPKC彼此结合,形成一个蛋白复合物,而且只有在形成这个复合物后,这些蛋白质才能在细胞中不对称分布。这就类似于前面讲过的A、B、C三种蛋白组成稳定蛋白复合物的例子。

在上皮细胞中,Par-1是以二聚体的形式存在于基底膜和侧膜位置的。如果Par-1扩散到顶端膜,Par-3/Par-6/aPKC复合物中的aPKC能够使Par-1磷酸化,让它结合于在细胞质中的Par-5,使它不能停留在顶端膜上。反过来,如果Par-3运动到基底膜和侧膜,Par-1又能够使Par-3磷酸化,让它与Par-5结合,而不能在基底膜和侧膜停留。

随后在果蝇和哺乳动物(包括人)中的研究表明,Par蛋白质在比线虫更高等的动物细胞中也都存在,而且Par-3/Par-6/aPKC复合物也都在细胞的极性中起不可缺少的作用。这个复合物位于线虫胚胎的前端、爬行细胞的前沿、神经细胞生长中的轴突的顶端、以及上皮细胞的顶部,因此这个复合物在细胞的各种极性状态或过程中都发挥作用,是一个有古老历史,几乎所有动物,从线虫到人,都使用的极性蛋白。



(2)Crumbs复合物

1990年,德国科学家Tepass等人在果蝇的上皮细胞中发现了一种膜蛋白,它只位于上皮细胞顶端膜上,在靠近细胞之间连接的地方浓度最高。为这个蛋白编码的基因突变会使上皮细胞的顶端膜消失,严重干扰果蝇上皮的结构,有时甚至导致这些细胞的死亡,而过量表达这个基因又会使顶端膜扩张,说明这个基因对上皮细胞的极性,特别是顶端膜的形成和稳定,有非常重要的作用。由于这个基因的突变使得果蝇身体表面的角质层呈碎裂状,所以这个基因被称为“碎裂基因”(Crumbs),平常被称为Crb基因。

和Par蛋白是水溶性的分子不同,Crb蛋白是一个膜蛋白,有一个跨膜区段。它的细胞内部分有一段37-40个氨基酸残基组成的肽链,对于它的功能是必要的,去除这个部分后,Crb蛋白对上皮细胞极性的作用就消失。这个细胞内的部分能够结合一个蛋白叫PALS-1(protein associated with Lin7, Stardust)。PALS-1又和另外一个蛋白PATj(PALS-1 associated tightjunction protein)结合。因此,Crb蛋白和Par蛋白一样,也形成一个由三个蛋白质组成的复合物Crb/PALS-1/PATj。这三个蛋白质对于复合物的稳定性和功能都是必要的,PALS-1基因和PATj基因的突变都和Crb基因的突变有相同的效果,使钙粘蛋白的分布错位,不能在细胞之间形成粘着连接,导致结构异常。。

Crb蛋白除了和PALS-1和PATj蛋白形成复合物外,Crb蛋白的细胞内部分还能够和Par复合物中的Par-6结合,这样Crb复合物Par复合物就彼此联系,共同存在于上皮细胞的顶端膜内。不仅如此,在顶端膜内,肌纤蛋白(actin)和血影蛋白(spectrin)一起组成网状的细胞骨架,以支持顶端膜。Crb复合物和Par复合物结合后,Par复合物中的aPKC能够使Crb蛋白的细胞内部分磷酸化,使它可以和血影蛋白结合,这样Crb复合物和Par复合物就与顶端膜内的细胞骨架相联系,进一步稳定它们在上皮细胞顶端的存在。



(3)Scribble 复合物

在果蝇的突变试验中,科学家还发现了另一类和细胞极性有关的基因。其中一个基因的突变会使果蝇的角质层起皱多孔,因此被起名为“Scribble”(简称Scrib),意思是“乱涂乱画”。突变体果蝇的细胞失去极性,性状变圆,不再形成单层上皮,而是互相堆积,说明Scrib基因也是为上皮细胞的极性所需要的。

和Par蛋白和Crb蛋白都形成由三个蛋白质形成的复合物一样,Scrib蛋白也和另外两个蛋白质形成由三个蛋白质组成的复合物。这两个蛋白分别是“Dlg”(lethal disc large)和“Lgl”(lethal giant larvae)。

与Par复合物和Crb复合物在细胞内的位置不同,Scrib复合物Scrib/Dlg/Lgl并不位于顶端膜下,而是在侧膜区。这个复合物的作用看来是排斥Par复合物和Crb复合物,让它们只位于顶端膜,而不能到侧膜区来。突变Scrib复合中的任何一个基因,都会使前两个复合物中的蛋白失去它们在顶端膜的定位,而变为在细胞中平均分布。E-钙粘蛋白也失去了它们在细胞侧面的定位,变为在细胞膜的所有位置都有分布,使细胞的极性黏附丧失。因此Scrib复合物和前两个复合物是彼此拮抗的。



(4)细胞膜成分的不对称分布

除了Par、Crb、和Scrib这三个蛋白复合物在上皮细胞中的不对称分布外,顶端膜和基底侧面膜所含的一种磷脂成分也不相同。磷脂(phospholipid)是以甘油分子(丙三醇)为核心的分子。甘油的三个羟基中,有两个(包括中间的那一个)通过脂键与脂肪酸相连,另一个羟基与磷酸根相连,磷酸根上再连上其它亲水的分子,例如丝氨酸、乙醇胺、胆碱、肌醇等,这样形成的分子分别叫做“磷脂酰丝氨酸”、“磷脂酰乙醇胺”、“磷脂酰胆碱”和“磷脂酰肌醇”。其中磷脂酰肌醇(phosphatidylinositol,简称PI)的磷酸化产物是重要的信息分子。

肌醇(inositol)的化学结构是“环已六醇”,即6个碳原子连成环状,每个碳原子上面连一个氢原子和一个羟基。在6个羟基中,1号碳原子上的羟基与磷脂分子上的磷酸根相连,4、5、6号碳原子上的羟基都可以被磷酸化,但是2号和6号碳原子上的羟基(即和1号碳原子相邻的羟基)不会和磷酸根相连。4、5、6号碳原子上的羟基各由不同的激酶磷酸化。最先被磷酸化的是4号位的羟基(被磷脂酰肌醇-4-激酶催化,用ATP作为磷酸根的供体),生成“磷脂酰肌醇-4-磷酸”(phosphatidylinositol-4-phosphate,简称PI4P,或PIP)。PIP-5-激酶能够使PIP分子中第5号碳原子上的羟基磷酸化,生成“磷脂酰肌醇-4,5-二磷酸”(phosphatidylinositol-4,5-biphosphate,简称PI(4,5)P2,或PIP2)。PIP2还可以进一步被磷酸化,通过PIP2-3-激酶使第3号碳原子上的羟基磷酸化,生成“磷脂酰肌醇-3,4,5-三磷酸”(phosphatidylinositol-3,4,5-triphosphate,简称PI(3,4,5)P3,或者PIP3)。读者不必为这些复杂的名称费脑筋,只需要记住PI是磷脂酰肌醇,PIP是磷脂酰肌醇上连一个磷酸根,PIP2连两个磷酸根,PIP3连三个磷酸根就行了。

在上皮细胞中,PIP2位于顶端膜上,而PIP3位于基底侧膜上。细胞之间的紧密连接(tight junction)则把这两个部分的细胞膜分隔开来,不让这两部分细胞膜的成分互相交换混合。位于顶端膜的PIP2能够和“膜联蛋白2”(annexin2)结合,膜联蛋白又和Cdc42蛋白结合,Cdc42又可以招募par复合物中的Par-6和aPKC到顶端膜并且活化它们,和Par-3形成最后的复合物,如果人为地把PIP2引入基底侧膜,基底侧膜就变得像顶端膜,所结合的蛋白质也会改变。所以PIP2可以对Par复合物的定位起引导作用。

反过来,如果人为地把PIP3引入顶端膜,就会把顶端膜的性质变为基底侧膜,所连的蛋白质也相应变化。除了紧密连接能够防止顶端膜中的PIP2和基底侧膜上的PIP3相混以外,在顶端膜上还有一个叫PTEN的磷酸酶(phosphatase and tensin homolog),它可以把PIP3脱去一个磷酸根,变成PIP2,这样PIP3在顶端膜就没有存在的可能。同样,在基地侧膜上有一个PIP2的激酶(phosphatidylinositol-3-kinase,简称PI3K),可以在PIP2上加上一个磷酸根,把PIP2变成PIP3。这样PIP2也不能在基地侧膜区域存在。

从以上的叙述可见,Par复合物、Crb复合物和Scrib复合物各由三个蛋白组成,而且都要三个蛋白质存在才能形成稳定的复合物,这就提供了一个正反馈的机制,即复合物中的每一种蛋白都起稳定对方的作用。Par复合物和Crb复合物之间的联系,顶端膜中PIP2对Par复合物的定位引导作用,组成更高一层的正反馈机制。而Par复合物、Crb复合物和Scrib复合物之间的拮抗,使得前两种复合物不能和Scrib复合物位于细胞中的相同位置。细胞中的分子虽然是动态的,但是通过这些机制,细胞却可以被极化,极化的细胞就可以连成片状、形成上皮,并且进一步形成腔和管的结构。参与这些过程的蛋白质是高度保守的,从线虫到哺乳动物,用的都是同一套基因。

这些复合物不仅自身在细胞内不对称分布,他们还通过“Rho GTP酶”影响细胞内由细胞骨架构成的运输系统的方向。例如通过顶端膜分泌的蛋白质就是通过这些通路从高尔基体运送到顶端膜的,而不会向基底侧膜方向运输;基底侧膜所需要的蛋白质也不会向顶端膜运输。物质的定向运输又进一步增强和巩固细胞的极性,因此这些系统是彼此联系并且彼此促进的。
打开淘股吧APP
5
评论(31)
收藏
展开
热门 最新
天汉

15-06-06 15:09

0
近日,一篇发表于国际杂志《细胞—代谢》的研究论文中,来自美国索尔克研究所的研究人员通过研究发现,人类机体的生理和心理活动依赖于一种单一的代谢蛋白质,该蛋白可以控制全身的血流以及营养物质,该研究或为开发潜在的疗法进行再生医学及发育医学研究来解决个体记忆和学缺失等障碍提供一定的帮助。

研究者Ronald Evans表示,心脏和肌肉需要强劲的能量来进行锻炼,而神经元则需要大量的能量来帮助机体形成记忆;我们发现肌肉和大脑的能量可以被一种名为雌激素相关的受体γ(ERRγ)单一蛋白所控制,此前研究者揭示了ERRγ在心脏和骨骼肌中的角色,2011年,研究人员发现,促进久坐小鼠机体的ERRγ活性可以帮助增加肌肉的血液供给并且加倍小鼠的奔跑能力。

理解神经元的代谢机制或可帮助开发治疗学和注意力障碍相关疾病的新型疗法,研究者希望可以通过改变ERRγ的水平来增强个体的记忆力。(来源:中国科学报 潘玉)
天汉

15-06-06 15:08

0
晨报记者 董川峰

科幻电影《阿凡达》虚构了利用“脑—脑接口”技术实现异体生物控制的科学梦想,电影中的幻想能在现实实现吗?昨天,记者从上海交通大学获悉,该校机械与动力工程学院硕士研究生李广晔在导师张定国的指导下,成功利用人类的大脑意念遥控活体蟑螂。这只蟑螂在人脑的指挥下,竟然完成了S形轨迹和Z形轨迹等任务。

建立功能性“脑—脑接口”

据介绍,该研究建立起了人脑与蟑螂大脑的功能性“脑—脑接口”,把人脑信号发送到了蟑螂大脑,实现了人脑对蟑螂运动的远程无线控制。

控制者头部佩戴便携式无线脑电采集设备,控制者根据视觉反馈和视觉刺激,脑部产生方向控制意图;计算机程序解码脑电信号,识别控制者的控制意图,控制意图转换为控制指令后无线发送到蟑螂的电子背包接收器;蟑螂脑部的触角神经被植入了电刺激的微电极,这样就制作出了一个可控的活体“机器动物”。

利用蓝牙通信技术,建立计算机同电子背包的无线通讯,电子背包可接收来自控制者大脑的指令,通过侵入式神经电刺激技术向蟑螂的触觉神经发送特定模式的电脉冲,进而实现人脑对蟑螂运动的控制。

据介绍,该成果获得2015年国际机器人与自动化学会(IEEE RAS)学生视频竞赛第二名。这项研究实现了人脑实时控制活体蟑螂走S形轨迹和Z形轨迹等任务。研究者指出,此项技术拓展了传统的脑机接口技术,初步尝试了“阿凡达”式的脑—脑通讯,将来亦可用于现实中复杂地形侦查、排险等操作,还为“脑联网”的兴起储备技术奠定基础。

据悉,研究者近期还将继续改进控制模式,实现多人协同控制多只蟑螂竞赛模式演示。

大脑遥控指挥实验非首例

据悉,交大学生这种大脑遥控指挥外物的实验,在国内也并非首例。早在2012年,浙大就通过微型芯片实现了猴子利用意念控制机械手。

据介绍,为了完成这项实验,科研人员必须先在一只猴子大脑运动皮层,植入两块4毫米×4毫米芯片(96个电极),这两块芯片与200多个神经元相连接,用来感受来自神经细胞的脉冲。而芯片的另一头连接着一台计算机,它实时记录着这只猴子一举一动发出的神经信号。

科研人员再运用计算机信息技术成功提取并破译猴子大脑关于抓、勾、握、捏四种手势的神经信号,使猴子的“意念”能直接控制外部机械手。

据了解,将芯片植入动物甚至人的大脑这种实验,都必须经过相关部门的审核。比如,浙大的这项实验就需要通过动物伦理委员会的论证和批准。

据预测,将来人类可通过大脑讯息,直接和个人计算机的操作系统及软件交互交流,不用鼠标和键盘便可开启程序和在计算机撰写笔记。相关技术将来更可发展为“大脑网络”(brain  net),让人类以大脑讯息直接沟通。
天汉

15-06-06 15:07

0
《细胞》:人类原始生殖细胞研究获重要成果


封面设计源于中国古代象征生殖的图腾——玄武,寓意哺乳动物通过有性生殖(蛇与龟)来维持完整的生命周期(圆环),而中心处的生殖细胞(红色)则在遗传信息的世代沿袭中起着非常关键的作用


人类生殖细胞系(精子、卵细胞及原始生殖细胞)、囊胚以及着床后胚胎体细胞的DNA甲基化水平示意图



 父本印迹基因H19和母本印迹基因PEG3在各个发育阶段的原始生殖细胞以及体细胞中的DNA甲基化。其中每一行连锁的圆圈代表全基因组DNA甲基化测序结果中一条读段上的CpG位点,白色圆圈代表未甲基化的CpG位点,黑色圆圈代表甲基化的CpG位点


人类原始生殖细胞代表性基因的表达水平以及DNA甲基化随发育时间变化的示意图

2015年6月4日,国际知名学术期刊CELL以封面文章的形式发表了北京大学生命科学学院生物动态光学成像中心汤富酬研究组和北京大学第三医院乔杰研究组的最新研究成果——人类原始生殖细胞的转录组和DNA甲基化组概观(The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells)。该项工作系统、深入地研究了人类多个发育阶段原始生殖细胞(PGC)的转录组和DNA甲基化组,发现人类原始生殖细胞不同于小鼠原始生殖细胞的关键独特特征。

人类原始生殖细胞产生于胚胎发育的早期,是发育为成熟的精子和卵细胞的前体细胞,精卵结合后会发育成新的个体、并将遗传物质传递给下一代以维持种族的延续。因此,对人类早期胚胎以及原始生殖细胞的发育过程进行深入的研究对于理解人类胚胎发育特征以及对于反复流产、胚胎停育、不孕不育等疾病发病机制的认识具有重要意义。基因组DNA甲基化作为一种重要的表观遗传修饰方式,是调控细胞分化发育过程中基因表达的主要机制之一,它并不改变基因序列,但是可以遗传给后代,容易受外界环境的影响而发生改变,在胚胎发育、干细胞分化、癌症发生等方面发挥着重要的作用。过去人们以小鼠作为模式动物进行研究,发现了复杂基因表达调控网络和大规模DNA甲基化重编程对于早期胚胎以及原始生殖细胞发育的调控规律。但是由于物种间的差异,这些以小鼠为模型得出的调控规律是否适用于人类早期胚胎和原始生殖细胞的发育过程并不清楚。人类胚胎在发育过程中有两轮大规模的DNA甲基化组重编程发生。第一轮发生在受精后的植入前胚胎中,第二轮发生在植入后的生殖细胞中。

北京大学研究团队利用自己团队在国际上率先发展的高灵敏度的DNA甲基化组高通量测序技术,首先对人类植入前胚胎的DNA甲基化图谱进行了单碱基分辨率的、全基因组测序分析,发现人类精卵结合后,早期胚胎的基因组DNA发生大规模的去甲基化,甲基化程度从精子中的86%(中位数)降低到囊胚期胚胎中的43%,而在这一过程中印记基因控制区域的DNA甲基化得以精确的维持。在植入后的胚胎中,基因组DNA被大规模重新甲基化,DNA甲基化水平增加到92%。该项研究还发现了DNA甲基化组重编程对于基因表达网络的关键调控特征。相关的研究成果发表在2014年7月的Nature上。该项研究为人们提供了一个深入分析人类早期胚胎发育过程中基因表达网络表观遗传调控的坐标系统。

在此基础上,该研究团队对人类胚胎中第二轮DNA甲基化组重编程过程及其对基因表达网络的调控关系进行了深入、全面的分析。在正常情况下,一个植入后胚胎内大部分组织器官的基因组DNA加上甲基化标记后就基本维持稳定、不再擦去,而含有要传递给后代遗传信息的原始生殖细胞则要经历大规模的DNA甲基化擦除和重建的过程。该团队利用精细的流式细胞分选技术对于不同发育阶段以及不同性别的人类原始生殖细胞进行了分选、收集,再结合单细胞转录组高通量测序、微量细胞DNA甲基化组高通量测序、微量细胞DNA羟甲基化组高通量测序等技术、以及细胞免疫荧光技术,对人类原始生殖细胞的转录组、DNA甲基化组、以及组蛋白共价修饰等关键特征进行了深入的分析。

该项研究发现,与小鼠原始生殖细胞类似,处于发育早期阶段的人类原始生殖细胞也会表达一系列与干细胞多能性相关的基因(例如OCT4、 NANO G和REX1等),印证了用小鼠作为模式动物研究原始生殖细胞发育过程的重要性。另外一方面,与小鼠不同的是,人类原始生殖细胞并不表达关键的转录因子基因SOX2,取而代之的是表达另外两个SOX家族基因——SOX15和SOX17。同时,人类原始生殖细胞还表达一系列与生殖细胞发育相关的基因(例如KIT、TNAP、AP2γ和NANOS3等)。与早期处于有丝分裂阶段的细胞相比,进入减数分裂阶段的人类原始生殖细胞其转录组发生明显改变,同时细胞之间的异质性也增强,提示原始生殖细胞在进入减数分裂停滞期时同一个胚胎的不同生殖细胞处于显著不同的发育状态。其次,在人类植入后雌性胚胎中,每个细胞的两条X染色体中的一条会随机失活,以保持两性的X染色体剂量相同(两性都保持每个细胞中只有一条活跃转录的X染色体)。而在人类雌性胚胎的生殖细胞中失活的那条X染色体会被重新激活,该团队发现这一过程在发育第4周的雌性原始生殖细胞中就已经完成了,明显早于小鼠原始生殖细胞中X染色体的重新激活。第三,人类原始生殖细胞在发育过程中会经历大规模的DNA甲基化擦除,并且在发育到第10-11周时,DNA甲基化水平降低13倍达到了最低点,从植入后早期胚胎中的92%降低到此时的7%左右。这是人类所有已知类型的正常细胞中DNA甲基化程度最低的细胞类型,说明原始生殖细胞的DNA甲基化组具有鲜明的独特性。第四,虽然人类原始生殖细胞基因组中绝大部分区域的DNA甲基化被完全擦除,但在一些重复序列原件上仍然残留大量DNA甲基化,尤其是微卫星序列ALR(37%)以及一些进化上比较年轻的重复原件,如L1(23%)、Alu(12%)和ERVK(30%)等,为人类隔代遗传现象的表观遗传学分析提供了有用的线索。最后,在如此大规模的DNA甲基化组重编程过程中,转录组水平的基因表达网络保持了高度稳定,组成性异染色质也保持稳定,提示表观遗传调控的其他关键组分、特别是组蛋白的各种共价修饰在这一过程中可能起了关键作用。

该项工作首次分别在单细胞以及单碱基分辨率对人类原始生殖细胞的转录调控网络和DNA甲基化重编程过程进行了深入、系统的分析,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。为人类生殖细胞的表观遗传重编程、早期胚胎全能性的建立、DNA甲基化的隔代遗传、以及胚胎干细胞向精卵定向分化等问题的探究提供了理论基础。对辅助生殖技术的安全性评估、疾病对后代影响的评价、以及临床上生殖细胞发育异常相关疾病的研究具有非常重要的意义。

北京大学的郭帆博士、闫丽盈博士、博士生郭红山、博士生李琳是这篇论文的并列第一作者。北京大学生命科学学院生物动态光学成像中心的汤富酬研究员和北京大学第三医院的乔杰教授是该论文的共同通讯作者,北京大学生命科学学院生物动态光学成像中心的高毅勤研究组参与了该项研究的关键生物信息学分析工作。该项研究得到了国家自然科学基金、国家重大科学研究计划、北京市科委前沿项目基金、以及北大清华联合中心基金等支持。
天汉

15-06-03 19:54

0
本报讯(记者黄辛)中科院上海生科院营养所詹丽杏研究组揭示了极性蛋白AF6抑制胰腺癌转移的重要作用及机制。相关研究成果近日在线发表于《自然通讯》。

细胞极性是指细胞形态、蛋白质分布以及细胞功能的不对称性,为细胞发育、维持顶底极性、损伤修复及组织完整性等生理过程所必需。研究显示,极性蛋白的异常表达及错误定位均与肿瘤紧密相关。上皮肿瘤发生及恶性转变过程通常伴有细胞极性丢失以及组织结构紊乱的现象,尤其是发生上皮间充质转变(EMT)的上皮肿瘤细胞更易侵袭周围基质,最终引发转移。胰腺癌是死亡率最高的恶性肿瘤之一,其5年生存率小于6%。但到目前为止其侵袭转移机制尚不清楚。

在詹丽杏的指导下,许毅博士等基于大量临床样本分析及实验研究发现,胰腺上皮细胞中的AF6对EMT相关转录因子Snail具有负向调控作用。研究还表明,FOXE1是调控Snail的重要转录因子,Dvl2与FOXE1结合形成转录复合体共同促进Snail转录;胰腺上皮细胞中AF6通过竞争性抑制Dvl2-FOXE1复合体与Snail启动子的结合而抑制Snail 转录。而极性蛋白AF6入核定位功能,被证明是AF6抑制Snail蛋白表达所必须。临床样本分析亦证实胰腺癌中AF6低表达和Snail高表达具有显著相关性,且与胰腺癌患者的恶性程度以及预后密切相关。
天汉

15-06-03 12:37

0
启动免疫系统的新型PD-1相关抗癌药物对恶性黑色素瘤和肺癌取得了理想的临床效果,挽救了大量癌症患者的生命,但是这种药物对大肠癌没有效果。不过有一例大肠癌患者出现例外,2007年经过这种药物治疗后,转移性大肠癌肿瘤神奇消失,这引起科学家的极大兴趣。科学家们怀疑这种神奇效果可能是因为该患者肿瘤细胞的基因突变数量巨大。最近一项小型临床研究提示,过去曾经认为对这种抗癌药物无效的肿瘤类型,只要存在DNA错配修复缺失,使用这种药物就可以取得理想的治疗效果。这意味着这种药物能对3-4%的癌患者产生效果。
PD-1/PD-L1免疫疗法是利用人体自身的免疫系统来控制癌症,通过阻断PD-1/PD-L1信号通路使癌细胞死亡,具有治疗多种类型肿瘤的潜力,这种药物在一些患者身上产生了非常好的效果,能控制肿瘤长达数年,能实质性改善患者总生存期。关于只对恶性黑色素瘤和肺癌取得理想效果的原因,一个观点认为这类肿瘤细胞有更多基因突变。某些突变产生的异常蛋白能屏蔽免疫系统对肿瘤抗原的识别,基因突变数量越多,PD-1抑制剂恢复免疫系统抗肿瘤的机会越大。

美国约翰霍普金斯大学科学家对PD-1抑制剂产生理想治疗效果患者的大肠癌组织进行分析发现,其肿瘤组织中存在DNA错配修复功能丧失。错配修复是在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。错配修复基因功能丧失,可导致在DNA正常修复过程所发生的错误产生积累,导致基因的不稳定。因为存在这种问题,导致肿瘤细胞出现1000多基因突变。这是正常组织的10-100倍。根据这一个案提供的线索,约翰霍普金斯大学科学家推测其他存在类似问题的癌症患者也应该对PD-1抑制剂产生理想治疗效果。

为验证这一思路,约翰霍普金斯大学肿瘤学家Dung Le和Luis Diaz等在大肠癌和其他类型癌患者肿瘤组织中查找存在DNA错配修复基因突变的目标,这些患者因为对其他治疗无效而中断了治疗。然后他们将48名患者分成2组,1组存在这种基因突变,另1组不存在这种突变。全部患者都给予PD-1抑制剂pembrolizumab (Keytruda)治疗2周。

结果令人鼓舞,那些存在这种突变的患者大部分对治疗产生了非常好的反应,而没有这种突变的患者反应很少。25个缺乏这种突变的大肠癌患者中,没有一个有明显效果。存在这种突变的13个大肠癌患者中,8个发现肿瘤缩小,4个稳定,只有1个恶化。部分患者1年后仍然存活,而无反应的患者平均生存时间为7.6月。10名存在这种突变非大肠癌患者,包括胰腺、前列腺和子宫癌,7名肿瘤缩小或稳定,另外3名恶化。这一研究已经在新英格兰医学杂志发表,Le教授也在芝加哥美国临床肿瘤学会年会上报告了这一重要进展。

研究结果提示,由于大约3-4%的恶性肿瘤患者存在这种特定突变,这些患者中将有很大比例从这种PD-1抑制剂治疗药物中获得延长寿命的机会。纽约城纪念斯隆凯特琳癌症中心肿瘤免疫治疗学家Jedd Wolchok提出,这一研究也支持存在大量基因突变的患者对PD-1抑制剂的响应更好的观点。他的团队最近报道,恶性黑色素瘤和肺癌肿瘤组织中编码肿瘤突变新抗原越多,对免疫检查点阻断类治疗的效果越好。约翰霍普金斯大学小组的研究也给没有这种基因突变的患者带来希望,这些患者虽然没有这种突变,但经过常规放射和化学治疗后,肿瘤组织细胞可能会出现大量新的诱导突变,那么这些患者也许能对这种治疗产生响应。
孙学军
天汉

15-06-01 08:30

0
容之联,和空口港,华大来了,大学类的高潮与市价标杆,千元股来了
天汉

15-06-01 00:09

1
《自然—神经科学》上的一项研究发现了大脑中负责编码进攻和防御策略的区域。该研究选择日本象棋选手的大脑活动作为监测对象,得出的结论或能为科学家研究人类如何作出复杂决定提供新见解。

大量与大脑决策有关的研究所聚焦的都是在各种不同成本和风险之间,人会作出何种决定。这些决定依赖于所采取的全局策略,但这种策略本身是如何被大脑选中的一直是未知。日本象棋能够很好地便于区分大脑的进攻和防御策略,因为这两者之间有着强烈的对比区分。

Keiji Tanaka等人利用功能磁共振成像技术监测了17名高水平的日本象棋业余组选手在判断一些特定棋局应该选择进攻还是防守时的大脑活动情况。在第二次试验中,选手被要求为预设棋局和走棋策略选择具体走哪步棋。这样一来,研究人员便能确定大脑中负责编码走棋策略而非具体到走哪步棋的特定区域。

他们发现在具体走哪步棋前,大脑中就已经形成了走棋策略,这印证了之前的一个观点:我们首先采取策略,之后再根据各种限制条件选择特定的步骤。进攻和防守策略所形成的大脑区域分别为:后扣带回皮质(PCC)和吻侧前扣带皮层(rACC)。此外,背外侧前额叶皮层(dlPFC)的活动也与进攻和防守策略之间的区分有着最紧密关联,这意味着dlPFC在决策选择中也起着一定作用。
天汉

15-05-31 13:15

0
对疾病具有预防与治疗作用的都可以叫做“药”,而且不是所有的好“药”都很昂贵。古人从自然界无处不在的草本、木本、虫子、矿石中寻找药物,中国就流传着“神农尝百草”的故事。现代的药物发现已从自然界寻找发展到高通量筛选和组合化学合成,技术越来越神,时间越来越长,成本也越来越高。据说成功研发一种创新药物平均需要10年并花费10亿美金,甚至20几亿至100多亿美金!

可是,现代新药研究的路子越来越窄,目前化学仿生药基本上都借助受体(receptor)-配基(ligand)作用原理。事实上,生物体内存在很多简单而有效的药理机制,并不一定都要直接依赖药物与受体的相互作用。比如,最近《细胞——代谢》发表的一篇论文就揭示了皮肤通过积累盐分(钠离子)抗感染的独特机制,对新药研发颇有启发。

这篇文章的要点包括:人和小鼠都能在皮肤中积累钠离子,以防止感染;盐分可以增强经典的巨噬细胞活化途径,从而抵抗感染;盐分通过p38/AMPK和NFAT5信号转导通路增大巨噬细胞内的NOS2(iNOS)活性;高盐膳食促进皮肤钠离子贮存后,能治愈皮肤利什曼原虫感染。

这是一个过去未曾发现的皮肤抗感染新途径,尽管已知巨噬细胞NOS2/iNOS激活释放大量一氧化氮杀伤入侵者,但通常理解的机制是巨噬细胞先分泌促炎症细胞因子(如TNF-α),然后由TNF-α再激活NOS2/iNOS合成一氧化氮。当然,过量盐分积累造成的高渗环境也不利于病原体感染。

为了提高皮肤中的钠盐积累,一个最简单的办法就是炒菜或熬汤时多放点盐,但这样做就要冒患高血压等心血管病的风险,显然得不偿失。不过,这个研究成果对增强抗生素的抗菌性还是很有启发的,比如今后可以在抗生素软膏中适当添加点钠盐,以便在抗生素杀菌的基础上还能调动机体本身的抑菌功能。

在日常生活中,我们也可以尝试用盐水刷牙、盐水漱口,甚至用盐水治疗烫伤引起的感染,但在“伤口撒盐”可不是那么轻松惬意的感觉哦!另外,有些难治性感染,如中耳炎、脚气病(香港脚),也可以考虑一边外用抗生素,一边涂抹浓盐水,有助于提高治愈率。
天汉

15-05-16 10:17

0
长寿老人在其一生中都保持相对健康的身体状态,延缓甚至避免了一些老年病的发生,如心血管疾病、糖尿病、阿尔茨海默氏症、肿瘤等。并且长寿老人的后代在一定程度上继承了这样的生存优势。

自从文明出现以来,人们就在寻找长寿的线索,并试图延长人类的寿命。科学家研究发现,在人们40岁以前,通常遗传因素对寿命的影响约占15%~25%,生活惯等外界因素占有非常大的比重,换句话说,年轻时爱不爱惜身体,对寿命的影响是很大的。而到了40岁以后,遗传的作用开始越来越凸显,并且随着年龄的增长,遗传因素的比重也越来越大。

美国叶史瓦大学研究显示,百岁老人的长寿原因中遗传占了70%,也就是说,活到这个岁数,拼的就是谁的基因好了。

长寿位点说了算

衰老是长寿的宿敌,但长寿又是人群中客观存在的极度衰老现象。长寿老人,特别是百岁老人,往往能逃脱或延缓常见衰老相关疾病如肿瘤、心血管疾病、老年痴呆等的困扰,不仅如此,其后代发生衰老相关疾病的概率也显著低于一般人群。研究认为普通人群长寿的遗传力在25%左右,尽管一些研究已经发现一系列和长寿相关的遗传突变位点,但是绝大部分位点在不同人群中并没有得到重复,其中一个重要原因是种族的差异。

中科院昆明动物所孔庆鹏研究组的何永捍、逯翔等选择了18个与长寿具有潜在相关性的单核苷酸多态性位点,在中国四川省都江堰市的567例长寿老人和508个年轻对照者中进行了进一步研究。

他们发现,FOXO3基因的rs13217795焦点和ATM基因的rs189037位点与长寿表型显著相关。更重要的是,该项研究首次发现类胰岛素生长因子受体结合蛋白3 (IGFBP-3)的rs11977526 位点和长寿显著相关。FOXO3和IGFBP-3是胰岛素/类胰岛素生长因子受体信号通路中的重要组成部分,而ATM跟机体的氧化应激水平显著相关。

“这项研究进一步表明胰岛素信号通路和氧化应激在影响长寿中的重要作用。”孔庆鹏研究组在此结果的基础上继续探索。

DNA甲基化是关键

不过,科学家最近获得了一些不一样的研究发现。

“长寿老人和普通对照的疾病易感基因位点频率并无显著差别,提示其他遗传因素可能在长寿过程中发挥更重要的作用。表观遗传因子,特别是DNA甲基化,被发现与个体衰老以及年龄相关疾病紧密联系,但DNA甲基化在人类长寿中的作用还不十分清楚。”孔庆鹏团队利用甲基化DNA免疫共沉淀测序技术比较了云南、四川、海南、广西4个地区的长寿百岁老人和普通年轻人的全基因组DNA甲基化模式差异。

之所以选择这些地方,是因为广西巴马、四川都江堰、海南、云南都是中国长寿人群比较集中的地方,比较适合对于人群遗传背景的研究。

“而且我们前期对海南、四川的长寿老人进行过健康状况调查,他们患年龄相关性疾病的频率较普通老年人要低,所以选择这两个地方的长寿老人进行研究还是比较有代表性的。”肖富辉告诉记者,他主要从事数据分析、挖掘相关工作。

他们的调查研究发现626个具有显著甲基化差异的区域。研究组进一步分析发现,与这些差异甲基化区域相关的基因明显富集于与衰老相关的疾病,包括心血管疾病、?装型糖尿病、中风以及阿尔茨海默氏症等。

研究组还比较分析了高加索百岁老人的全基因组甲基化数据,进一步验证了该发现。

该项研究表明,长寿老人的确拥有特殊的DNA甲基化模式,可以通过抑制衰老相关疾病易感基因的表达,延缓这些疾病的发生,促进长寿性状产生。该研究结果已于近期发表在国际生物学期刊《公共科学图书馆—综合》上。

探索长寿奥秘

据悉,该研究是国家“973”计划项目“内脏器官衰老与相关老年疾病防治的基础研究”中一项课题,而长寿遗传机理研究是孔庆鹏课题组一个重要研究方向。

“针对这一问题,我们主要是对长寿老人(百岁老人)的生存优势进行机制探索,这些长寿老人在其一生中都保持相对健康的身体状态,延缓甚至避免了一些老年病的发生,如心血管疾病、糖尿病、阿尔茨海默氏症、肿瘤等。并且长寿老人的后代在一定程度上继承了这样的生存优势。通过比较长寿老人与一般人群DNA甲基化模式,基因表达、基因突变等差异,筛选长寿/衰老相关的重要遗传因子,并对筛选到的候选基因进行功能验证,可以帮助我们理解这些遗传因子对人类长寿的影响机制。”课题组的何永捍博士、刘耀文、吴焕主要从事功能验证方面的工作。

研究人员表示:促进长寿性状产生的原因,至今仍不清楚。与此同时,通过对长寿遗传相关因素的研究,不但有助于深入理解可能影响(延缓)衰老进程的遗传因子,而且还可能对了解衰老相关疾病的遗传机制提供新的线索。通过研究长寿老人健康长寿的遗传机制,一方面是尝试回答为什么长寿老人及其后代能“健康衰老”;更重要的是,通过研究长寿的遗传因子,特别是一些保护性因子,来帮助我们制定一些老年病的防治策略,提高老年人的生活质量,降低人口老龄化带来的社会和经济负担。(来源:中国科学报
寂听

15-05-15 11:41

0
Mark.
刷新 首页 上一页 下一页 末页
提交