0
注意到这里 p 表示的是酒鬼每次向x轴正方向前进一步的概率,也就是他站在悬崖边上向后退的概率。我们不妨根据这个概率的取值情况来对酒鬼悬崖漫步这个问题做个总结。
当 p 等于 0 或 1 时,这显然就成了必然事件,酒鬼一定掉下悬崖或者一定能安全地离开。
但有趣的是,即便当 p 不是 0,在它小于等于 1/2 时,这个酒鬼一样难逃失足的厄运。
0
而自 x =2 走出并最终到达 x =0 的情况可以分解为两个阶段:先从 x = 2 到 x = 1(可以走任意步),然后从 x = 1到 x = 0(同样可以走任意步)。我们知道后一个的概率是 P(1),那么前一个呢?其实是一样的,也是 P(1),它可以看作后一种情况的平移。又因为这两个事件相互独立,所以
0
假设他向右一步的概率为 p,向左的概率为 1 - p。当他在 x = n(n>0) 的位置的时候,不是向右就是向左。记 P(n)为从 x = n 的位置出发,最后到达 x =0 被吸收的概率。酒鬼一开始在 x = 1 的位置,我们要求的就是他到 0 的概率。
当酒鬼走完第一步后,他要么到了 x = 0(此事件发生的概率是 1-p),要么到了 x = 2 的位置(此事件发生的概率是 p),他再从 x = 2 出发最终走到 x = 0 被吸收的概率就是 P(2)。这时我们可以得到方程
0
从图中可以看到,达到0即意味着跌落悬崖。所以在 0 的那些概率的和便是酒鬼前六步掉下悬崖的概率。这个图本可继续下去,但随着步数的增多,完成它就充满了乏味的工作。
所以让我们把这个场景放到数轴上,换一种方式来看。如此一来醉鬼悬崖边漫步就相当于质点沿轴心运动这类问题了。酒鬼在这个数轴上随意地左右走动, 走到 x = 0 的位置意味着被吸收 ,也就是摔下了悬崖。
0
很多看似不相关的事物背后却有着千丝万缕的关系,比如今天故事的主角——酒鬼与赌徒。让我们从酒鬼在悬崖漫步这个荒诞的故事开始,算算他不幸掉下悬崖身亡的概率,然后在此基础上再向大家讲述酒鬼和赌徒背后那惊人的相通之处。
诡异的酒鬼徘徊
当一个喝大了的酒鬼在路上摇摇晃晃时,你是否会担心他还有能力避开一切障碍,成功找到家门而不是掉到某个下水沟里吗? 实际上,这正是非常有趣的酒鬼漫步问题,不妨让这个酒鬼的处境更夸张一些,设想他站在悬崖边,面前就是万丈深渊。如果他往后退一步远离悬崖的概率是 2/3 , 向前一步靠近悬崖的概率则是 1/3。那他摔下悬崖的概率是多少?
答案肯定不会是简单的 1/3。那不如先来看看酒鬼最初的几步会发生什么。下图是对这个酒鬼最初几步所有可能的轨迹的枚举。
0
酒鬼摇摆理论