下载
登录/ 注册
主页
论坛
视频
热股
可转债
下载
下载

光电转换率最高可达100% 新型太阳能电池研发成功

10-03-02 17:29 4030次浏览
sealsu
+关注
博主要求身份验证
登录用户ID:
加州理工学院近日研发出了一种新的太阳能电池,其基本原理是将细长的硅线阵列嵌入聚合物基板中。除了纤薄可弯曲外,它对太阳光的吸收和光电转换效率 方面都取得了极大地突破。此外,和传统太阳能电池所需要的昂贵的半导体材料量相比,这种新型太阳能电池仅需要一小部分。

应用物理学及材料学教授Harry Atwater和Howard Hughes表示:“这些太阳能电池首次突破了传统的吸光材料的光捕获极限。”新型太阳能电池所采用的硅线阵列对单一波长的入射光的吸收率高达96%,对 全波长阳光的捕获率可达85%。

Atwater 指出:“许多材料对光线的捕获能力很好,但是却无法转换成电能,比如黑涂料。对于太阳能电池来说,吸收的光子能否转换为电荷载子 (charge carrier)也非常重要。”而他们研发的硅线阵列太阳能电池则可以将所吸收光子的90%至100%转换为电子。从技术上讲,这种阵列拥有几近完美的内部量子效率(internal quantum efficiency)。

Atwater总结说:“对光的高吸收率和较好的转换能力成就了这种太阳能电池的高质量。”

硅线阵列中的硅线长度在30至100微米(micron)之间,直径仅为1微米。整个阵列的厚度相当于硅线的长度,但是从面积或体积角落来看,这种材料中只有2%才是硅,其它98%都是聚合物。由于硅是传统太阳能电池中一种很昂贵的成分,所以这种只需要传统所需量1/50的太阳能电池投产的成本将低很多。
打开淘股吧APP
1
评论(19)
收藏
展开
热门 最新
sealsu

10-03-03 09:10

0
Caltech Researchers Create Highly Absorbing, Flexible Solar Cells with Silicon Wire Arrays

PASADENA, Calif.—Using arrays of long, thin silicon wires embedded in a polymer substrate, a team of scientists from the California Institute of Technology (Caltech) has created a new type of flexible solar cell that enhances the absorption of sunlight and efficiently converts its photons into electrons. The solar cell does all this using only a fraction of the expensive semiconductor materials required by conventional solar cells.

"These solar cells have, for the first time, surpassed the conventional light-trapping limit for absorbing materials," says Harry Atwater, Howard Hughes Professor, professor of applied physics and materials science, and director of Caltech's Resnick Institute, which focuses on sustainability research.
This is a photomicrograph of a silicon wire array embedded within a transparent, flexible polymer film.
[Credit: Caltech/Michael Kelzenberg]

The light-trapping limit of a material refers to how much sunlight it is able to absorb. The silicon-wire arrays absorb up to 96 percent of incident sunlight at a single wavelength and 85 percent of total collectible sunlight. "We've surpassed previous optical microstructures developed to trap light," he says. 

Atwater and his colleagues—including Nathan Lewis, the George L. Argyros Professor and professor of chemistry at Caltech, and graduate student Michael Kelzenberg—assessed the performance of these arrays in a paper appearing in the February 14 advance online edition of the journal Nature Materials.

Atwater notes that the solar cells' enhanced absorption is "useful absorption."

"Many materials can absorb light quite well but not generate electricity—like, for instance, black paint," he explains. "What's most important in a solar cell is whether that absorption leads to the creation of charge carriers."

The silicon wire arrays created by Atwater and his colleagues are able to convert between 90 and 100 percent of the photons they absorb into electrons—in technical terms, the wires have a near-perfect internal quantum efficiency. "High absorption plus good conversion makes for a high-quality solar cell," says Atwater. "It's an important advance."

The key to the success of these solar cells is their silicon wires, each of which, says Atwater, "is independently a high-efficiency, high-quality solar cell." When brought together in an array, however, they're even more effective, because they interact to increase the cell's ability to absorb light.

"Light comes into each wire, and a portion is absorbed and another portion scatters. The collective scattering interactions between the wires make the array very absorbing," he says.
This is a schematic diagram of the light-trapping elements used to optimize absorption within a polymer-embedded silicon wire array.
[Credit: Caltech/Michael Kelzenberg]

This effect occurs despite the sparseness of the wires in the array—they cover only between 2 and 10 percent of the cell's surface area.

"When we first considered silicon wire-array solar cells, we assumed that sunlight would be wasted on the space between wires," explains Kelzenberg. "So our initial plan was to grow the wires as close together as possible. But when we started quantifying their absorption, we realized that more light could be absorbed than predicted by the wire-packing fraction alone. By developing light-trapping techniques for relatively sparse wire arrays, not only did we achieve suitable absorption, we also demonstrated effective optical concentration—an exciting prospect for further enhancing the efficiency of silicon-wire-array solar cells."

Each wire measures between 30 and 100 microns in length and only 1 micron in diameter. “The entire thickness of the array is the length of the wire,” notes Atwater. “But in terms of area or volume, just 2 percent of it is silicon, and 98 percent is polymer.”

In other words, while these arrays have the thickness of a conventional crystalline solar cell, their volume is equivalent to that of a two-micron-thick film.

Since the silicon material is an expensive component of a conventional solar cell, a cell that requires just one-fiftieth of the amount of this semiconductor will be much cheaper to produce.

The composite nature of these solar cells, Atwater adds, means that they are also flexible. "Having these be complete flexible sheets of material ends up being important," he says, "because flexible thin films can be manufactured in a roll-to-roll process, an inherently lower-cost process than one that involves brittle wafers, like those used to make conventional solar cells."

Atwater, Lewis, and their colleagues had earlier demonstrated that it was possible to create these innovative solar cells. "They were visually striking," says Atwater. "But it wasn't until now that we could show that they are both highly efficient at carrier collection and highly absorbing."

The next steps, Atwater says, are to increase the operating voltage and the overall size of the solar cell. "The structures we've made are square centimeters in size," he explains. "We're now scaling up to make cells that will be hundreds of square centimeters—the size of a normal cell."

Atwater says that the team is already "on its way" to showing that large-area cells work just as well as these smaller versions.

In addition to Atwater, Lewis, and Kelzenberg, the all-Caltech coauthors on the Nature Materials paper, "Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications," are postdoctoral scholars Shannon Boettcher and Joshua Spurgeon; undergraduate student Jan Petykiewicz; and graduate students Daniel Turner-Evans, Morgan Putnam, Emily Warren, and Ryan Briggs.

Their research was supported by BP and the Energy Frontier Research Center program of the Department of Energy, and made use of facilities supported by the Center for Science and Engineering of Materials, a National Science Foundation Materials Research Science and Engineering Center at Caltech. In addition, Boettcher received fellowship support from the Kavli Nanoscience Institute at Caltech.

# # #
Contact:
Lori Oliwenstein
(626) 395-3631
lorio@caltech.edu
sealsu

10-03-03 09:09

0
http://media.caltech.edu/press_releases/13325 原文地址
telemann

10-03-02 22:52

0
太阳光的波长范围。。。从远红外到紫外...
telemann

10-03-02 22:50

0
硅玻璃板至少要反射5-10%的阳光吧。。。或许更多
tag7

10-03-02 22:16

0
标题D了....

是光捕获率
不是光电转换率
鱼鹰

10-03-02 20:49

0
文章没错,楼主理解错了。

对光的全波长能量吸收达到96%不稀奇的。很多日本德国的镜头,通过各种技术,这项指标能够达到99%以上呢。

关键是光-电转换效率能有多高。
FreeStoneK

10-03-02 20:46

0
100%是不可能的
90%也已经牛的让人没话说了
现在一般是10%~20%
非常好的是20%多

硅不贵,硅板才会贵
创新者

10-03-02 20:36

0
吹牛的吧,可能吗!
tom100

10-03-02 18:39

0
不要迷恋100%,100%只是个传说.
yhwwhy

10-03-02 18:30

0
恩,很快就会出现转换效率120%甚至更高的材料
刷新 首页上一页 下一页 末页
提交