赵晓光:IPHONE8 今天全球刷屏 -----人脸识别。 AR 3D 光学革命在即。
从指纹识别到虹膜识别,生物识别逐步进入消费电子产品终端,全球生物识别市场预计2020年将达250亿美元,其中目前增速最快的为脸部识别,在应用场景不断增加的情况下,我们判断脸部识别极有可能是下一个消费终端创新的大方向!
脸部识别从去年开始广泛出现应用,金融相关安全领域是应用渗透最快的,这点和指纹识别相似。伴随
互联网 金融的发展,脸部识别会成为“基建”需求。智能手机虽然增速下滑,但是依然没有另一个新市场有每年超过10亿台的容量,在目前智能手机创新遭遇瓶颈,产品趋于同质化的背景下,脸部识别增强产品差异化,将成为新的创新点与趋势。
从
苹果 、三星、华为、Facebook、
谷歌 、华为的多项专利可以发现,各大终端巨头纷纷布局脸部识别技术。其中,苹果在手机端的布局最为明显。先后收购Polar Rose,Prime Sense,Perceptio,Faceshift,Emotient,Turi等脸部识别相关技术公司。在15年获得脸部识别解锁设备的专利,特意保护红外传感器的使用,符合脸部识别的需求。
脸部识别产业链主要分为商业系统、主流软件、算法等,终端设备的集成化应用需要整套解决方案,大厂商在这方面具有优势,我们更关注相关硬件产业链变化机会。传统的脸部识别技术主要基于可见光图像的脸部识别,但这种方式有着难以克服的缺陷,近红外脸部识别系统能够彻底解决环境光照影响问题。
技术上红外LED窄带滤光片有望成为核心因素。目前有些方案采用隔离可见光透过红外光的红外玻璃作为滤光片,然而普通的红外玻璃只是隔离了可见光和紫外光,并没有隔离干扰光中处于红外波段的部分。因此想得到良好的抗干扰效果,必须采用窄带滤光片。
从近期摄像头与AR的发展看,国内的光学公司成为主力供应商,反应国内的光学实力足够消费电子及特殊显示的需求,窄带滤光模组预计国际大客户仍会采用国内供应商。
脸部识别究竟怎么实现
有关人脸识别的研究最早可以追溯到1888年,法国人Sir Franis Galton于1888年和1920年在《NATURE》上发表了两篇关于人脸进行身份识别的论文,使用的是人脸的侧面特征,并对人类自身的人脸识别能力进行了分析和阐述。在1960年左右,自动人脸识别(Automatic Face Recognition, AFR)开始作为一个独立学科迅速发展起来。最早的有关自动人脸识别的文献是Chen和Bledsoe在1965年的报告。按照人脸识别的自动化程度,自动人脸识别研究的发展大致可以分为三个阶段:
第一阶段:1965~1990年,人脸识别初级阶段;
第二阶段:1991~1997年,人脸识别进入人机交互式识别阶段;
第三阶段:1998~当前,人脸识别进入真正的机器识别阶段。
人脸识别主要分为人脸检测和人脸比对两部分。其工作流程为:
1. 图像采集:通过采集传感器(如摄像头)采集人脸图像;
2. 人脸定位及提取:然后对采集到的数据进行处理,去除采集数据中的噪声和环境因素,抽取样本中能够表征个人身份的特征信息;
3. 特征对比:再把这些特征信息与数据库中已有的信息进行对比;
4. 输出结果:最后根据比对的相似程度来判断是否匹配。
目前人脸识别市场的解决方案主要包括:2D识别、3D识别、热感识别,目前市场上主流的识别方案是采用摄像头的2D方案。2D脸部识别是基于平面图像的识别方法,但由于人的脸部并非平坦,因此2D识别在将3D人脸信息平面化投影的过程中存在特征信息损失。3D识别使用三维人脸立体建模方法,可最大程度保留有效信息。因此3D人脸识别技术的算法比2D算法更合理并拥有更高精度。热传感识别技术使用一个三层的BP(back-propagation)前馈神经网作为分类器,在使用热感信息的同时使用不会被发型、呼吸等环境因素影响的关键脸部几何信息,如鼻梁角度、脸颊面积等,以增强识别精度。
从目前的发展看,主要分为商业系统、主流软件、算法等,我们认为终端设备的集成化应用需要整套解决方案,大厂商在这方面具有优势。脸部识别的组件部分主要涉及:软件部分为数据库、算法;硬件部分为摄像头模块、集成设备、传感器、芯片、IC、硬件接口电路、液晶显示屏、存储器等;以及,整合软硬件厂商的系统服务商。其中算法为产业链核心环节,同时也是技术壁垒最高的环节。从目前国内设计脸部识别的公司看,主要还是提供摄像头算法等,硬件的价值可能被忽视。
3.2. 技术上红外LED窄带滤波有望成为核心要素
传统的脸部识别技术主要基于可见光图像的脸部识别,但这种方式有着难以克服的缺陷,近红外脸部识别系统能够彻底解决环境光照影响问题。传统可将识别在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。比如,拍照时遇到侧光时出现的“阴阳脸”现象,就可能无法正确识别。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但目前这两种技术还远不成熟,识别效果不尽人意。基于近红外图像的人脸识别核心技术和系统,在不同光线条件下,能够拍摄不受环境光照变化影响的近红外人脸图像,加上领先的算法,能够取得很高的识别率。
近红外人脸识别包括两部分:主动近红外人脸成像设备和相应的光照无关人脸识别算法。使用强度高于环境光线的主动近红外光源成像,配合相应波段的光学滤片,可以得到环境无关的人脸图像,人脸图像只会随着人与摄像头的距离变化而单调变化。在此图像上采用一些特定的特征提取方式,如:局部二元模式(Local Binary Pattern,LBP)特征,可以进一步消除图像的单调变化,得到完全光照无关的特征表达。近年来,近红外人脸识别在实际生活中已经有了诸多应用,如:“深圳-香港生物护照自助通关系统”,“澳门-珠海生物护照自助通关系统”,“北京机场T3航站楼自助通关系统”等,均取得了很好的效果。
主动近红外人脸成像设备能为人脸识别提供不受环境光影响的、高质量的人脸图像,所谓的高质量包括:图像亮度合适、均匀、对比度合适、不存在过度曝光等。主动近红外人脸成像设备一般包括如下单元:
在相应波段强度高于环境光的主动近红外光源,一般为高功率850nm和940nm红外LED;
能够接收近红外光的摄像头,通常为CCD图像传感器。CCD具有体积小、重量轻、失真度小、功耗低、可低压驱动、抗冲击、抗振动、抗电磁干扰强的优点,因此被广泛应用于各种图像采集系统。在人脸识别系统中的CCD基本上是硅衬底的,其光谱响应范围为400nm~1100nm,该范围也就是窄带滤光片要考虑的光谱范围;
窄带滤光片,置于摄像头镜头外,允许近红外光通过的同时过滤环境光。主要用来隔离干扰光,透过信号光,充分突显有用信息,减小干扰信息,为后续的图像处理和识别奠定基础。
技术上红外LED窄带滤光片有望成为核心因素。目前有些方案采用隔离可见光透过红外光的红外玻璃作为滤光片,然而普通的红外玻璃只是隔离了可见光和紫外光,并没有隔离干扰光中处于红外波段的部分。因此想得到良好的抗干扰效果,必须采用窄带滤光片。
窄带滤光片的选取需要考虑多个光学指标,包括带宽、中心波长、截止波长、截止深度、峰值透过率、产品厚度等等。从近期摄像头与AR的发展看,国内的光学公司成为主力供应商,反应国内的光学实力足够消费电子及特殊显示的需求,窄带滤光模组预计国际大客户仍会采用国内供应商。